

### ВООРУЖЕННЫЕ СИЛЫ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ВОЕННАЯ АКАДЕМИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

# СБОРНИК НАУЧНЫХ СТАТЕЙ ВОЕННОЙ АКАДЕМИИ РЕСПУБЛИКИ БЕЛАРУСЬ

No 44

Минск 2023

### Редакционная коллегия

В. М. Булойчик (главный редактор),

доктор технических наук, профессор;

В. А. Куренёв (заместитель главного редактора),

доктор технических наук, профессор;

А. А. Жук, (секретарь),

кандидат технический наук, доцент

- В. Р. Драгун, кандидат военных наук, доцент;
- В. М. Белько, кандидат технических наук, доцент;
- В. М. Берикбаев, кандидат технических наук, доцент;
- Д. Ю. Богданов, доктор военных наук, доцент;
- А. И. Благовестов, кандидат военных наук, доцент;
- В. Б. Василевский, кандидат военных наук, доцент;
- В. И. Гринюк, кандидат военных наук, профессор;
- Р. А. Гуцев, кандидат технических наук, доцент;
- М. Ю. Избаш, кандидат военных наук, доцент;
- В. И. Кардаков, кандидат технических наук, доцент;
- В. А. Малкин, доктор технических наук, профессор;
- М. В. Пылинский, доктор военных наук, профессор;
- А. Г. Тицкий, кандидат психологических наук, доцент;
- С. А. Фомин, кандидат военных наук, доцент;
- Л. Л. Чайковский, кандидат технических наук, доцент.

В соответствии с приказом Высшей аттестационной комиссии Республики Беларусь научный журнал «Сборник научных статей Военной академии Республики Беларусь» включен в перечень научных изданий для опубликования результатов диссертационных исследований по военной и технической отраслям науки.

Набор и верстка: *Н. Д. Булаева* Дизайн обложки: *О. К. Котоласов* 

Подп. в печ. 23.06.23 г. Формат 60×84/8. Бумага офсетная. Гарнитура «Таймс». Ризография. Усл. печ. л. 13,49. Уч.-изд. л. 11,6. Тираж 100 экз. Зак. 134.

Издатель и полиграфическое исполнение:

учреждение образования «Военная академия Республики Беларусь».

Свидетельство о государственной регистрации издателя, изготовителя,

распространителя печатных изданий

№ 1/224 от 19.03.2014. № 2/81 от 19.03.2014.

ЛП № 02330/76 от 27.03.2014.

Пр. Независимости, 220, 220057, Минск

## СБОРНИК

# НАУЧНЫХ СТАТЕЙ ВОЕННОЙ АКАДЕМИИ РЕСПУБЛИКИ БЕЛАРУСЬ

### СОДЕРЖАНИЕ

**№** 44

### 1. Военные науки

| Aвтушко A. A., Латушко M. M. Формирование структуры полевого узла связи                                                   | _   |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| подвижного пункта управления с применением общего логико-вероятностного метода                                            | 2   |
| Богданов Д. Ю. Методика обоснования рационального состава сил и средств в интересах выполнения задач тылового обеспечения | 9   |
| в интересах выполнения задач тылового обеспечения                                                                         | 9   |
| тылового обеспечения войск (сил) в военное время                                                                          | 16  |
| Василевский В. Б., Шатько В. И. Возможные направления освоения опыта                                                      | 10  |
| вооруженных конфликтов в ходе изучения оперативно-тактических дисциплин                                                   | 26  |
| Василевский В. Б., Шатько В. И., Зайцев С. М. Аспекты военно-исторической                                                 |     |
| работы в Вооруженных Силах Республики Беларусь. Проблемные вопросы                                                        |     |
| и возможные пути их решения                                                                                               | 34  |
| Гулевич Г. И. Совершенствование системы боевой подготовки воинских частей                                                 |     |
| с учетом опыта специальной военной операции                                                                               | 47  |
| Kузьмин П. Ю., Благовестов А. И. Применение блочно-модульной технологии                                                   |     |
| при подготовке подразделений сил специальных операций                                                                     | 55  |
| 2. Технические науки                                                                                                      |     |
| Бекиш А. Р., Нефёдов Д. С., Сахарук Д. А. Исследование эффективности методов                                              |     |
| комплексирования изображений видимого и тепловизионного диапазонов                                                        | 64  |
| Буйвалов И. Е. Исследование диаграммы направленности линейной синфазной                                                   |     |
| равномерно возбужденной антенны в ближней зоне                                                                            | 75  |
| $\Gamma$ рибков $\Theta$ . $A$ ., $\Gamma$ ончаренко $B$ . $\Pi$ . Синхронизатор с тарельчатыми пружинами                 | 0.0 |
| в трансмиссии тягово-транспортных машин                                                                                   | 88  |
| Гуторов А. В., Домарацкий А. В., Ивуть П. В., Хомицевич А. Д., Щербаков Н. $\Gamma$ .                                     | 95  |
| Комплекс мультиспектральной съемки для БПЛА                                                                               | 93  |
|                                                                                                                           | 102 |
| Шевелёв А. А. Оценка эффективности специального программного обеспечения                                                  | 102 |
| 11                                                                                                                        | 109 |
|                                                                                                                           |     |

УДК 621.372.512

### ИССЛЕДОВАНИЕ ДИАГРАММЫ НАПРАВЛЕННОСТИ ЛИНЕЙНОЙ СИНФАЗНОЙ РАВНОМЕРНО ВОЗБУЖДЕННОЙ АНТЕННЫ В БЛИЖНЕЙ ЗОНЕ

И. Е. Буйвалов\*

Диаграмма направленности линейной антенны в мнимой области впервые была рассмотрена в статье [1]. Впоследствии материал был в значительной степени переработан, дополнен и предлагается в новой редакции. В статье показано, что мнимая область соответствует ближней зоне антенны, в которой наблюдается дифракция Френеля.

The radiation pattern of a linear antenna in the imaginary region was first considered in the article [1]. Subsequently, the material was largely revised, supplemented and is offered in a new edition. The article shows that the imaginary region corresponds to the near zone of the antenna in which Fresnel diffraction is observed.

### Ввеление

Исследование поля антенны с помощью электродинамических методов приводит к достаточно сложным аналитическим выражениям, не обладающим к тому же простой физической наглядностью. В то же время использование известных, хорошо изученных и наглядных представлений из других областей науки, подчиняющихся аналогичным физическим законам, позволяет быстрее и проще получить желаемый результат. Так, например, в антенных устройствах широко используются методы исследования, применяемые в оптике, теории электрорадиоцепей и теории длинных линий, то есть областях, имеющих дело с волновыми процессами.

О значении аналогии в физике Джеймс Максвелл писал: «Для составления физических представлений следует освоиться с существованием физических аналогий. Под физической аналогией я понимаю то частное сходство между законами двух каких-нибудь областей науки, благодаря которому одна из них является иллюстрацией для другой» [2, с.12].

Одной из основных характеристик антенны, определяющей ее направленные свойства, является амплитудная диаграмма направленности. Амплитудной диаграммой направленности (ДН) антенны  $\left|f\left(\theta,\phi\right)\right|$  называется зависимость амплитуды напряженности электрического поля в равноудаленных точках дальней зоны  $\left(r=\mathrm{const}\right)$  от направления (координаты  $\theta,\phi$ ).

В соответствии с теоремой перемножения диаграмм направленности результирующая комплексная диаграмма направленности антенны в дальней зоне может быть представлена формулой [3]:

$$f(\theta, \varphi) = f_1(\theta, \varphi) f_c(\theta, \varphi),$$

где  $f(\theta, \phi)$  – комплексная диаграмма направленности элемента антенны (элементарного излучателя);  $f_c(\theta, \phi)$  – комплексная функция, называемая множителем системы.

Элементарным называется излучатель, размеры которого весьма малы по сравнению с длиной волны  $\Delta L << \lambda, \ \Delta S << \lambda^2$ , где  $\lambda$  — длина волны;  $\Delta L$  — длина элементарного излучателя линейной антенны длиной L;  $\Delta S$  — площадь элементарного излучателя апертурной антенны с апертурой S. К элементарным излучателям относятся: элементарный электрический излучатель (диполь Герца), элементарный магнитный излучатель (магнитный диполь Герца) и излучатель Гюйгенса [3, 4].

В то время как тип элементарного излучателя определяет частные свойства антенны, множитель системы характеризует ее общие свойства, не зависящие от типа излучателя. Принимая во внимание слабую направленность элементарного излучателя и тот факт, что основное влияние на характеристики ДН антенны оказывает множитель системы, остановимся

на его рассмотрении. Также учитывая, что анализ диаграмм направленности прямоугольных синфазных раскрывов с разделяющимся амплитудно-фазовым распределением сводится к анализу линейных антенн [3], будем рассматривать множитель системы эквивалентной линейной антенны.

В общем виде множитель системы непрерывной линейной антенны записывается:

$$\left| f_{c}(\theta) \right| = \left| \int_{0}^{L} \mathbf{A}(z) e^{i\Phi(z)} e^{ikz\cos\theta} dz \right|, \tag{1}$$

где L – длина антенны; A(z) и  $\Phi(z)$  – соответственно амплитудное и фазовое распределения на антенне.

Множитель системы описывает эффект наложения (суперпозиции) сферических волн, возбуждаемых точечными изотропными излучателями (элементами антенны dz) в дальней зоне, называемой также областью дифракции Фраунгофера, при  $r=r_0=$  const (рисунок 1).

Дальняя зона характеризуется тем, что парциальные поля  $d\tilde{E}$  элементов антенны можно считать параллельными и оперировать ими как скалярными величинами.

Примечание — Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями и связанных с отклонениями от законов геометрической оптики. Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн. По историческим причинам перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом когерентных дискретных источников, принято называть интерференцией волн. Перераспределение интенсивности, возникающее вследствие суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно, принято называть дифракцией волн [5].



Рисунок 1. – Сложение полей элементарных излучателей в дальней зоне

Если ось z на рисунке 1 направить в противоположную сторону, а в интеграле (1) установить бесконечные пределы интегрирования, то получим преобразование Фурье от амплитудно-фазового распределения (АФР) на антенне  $A(z)e^{i\Phi(z)}$ :

$$|f_{\rm c}(\theta)| = \int_{-\infty}^{\infty} A(z)e^{i\Phi(z)}e^{-ikz\cos\theta}dz$$
.

Подставив в данное выражение A(z) = 1,  $\Phi(z) = 0$ , получим:

$$|f_{c}(\theta)| = \left| \int_{-L}^{0} e^{-ikz\cos\theta} dz \right| = \left| \frac{1 - e^{ikL\cos\theta}}{-ik\cos\theta} \right| = \frac{L}{2} \left| e^{ik\frac{L}{2}\cos\theta} \right| \times$$

$$\times \left| e^{-ik\frac{L}{2}\cos\theta} - e^{ik\frac{L}{2}\cos\theta} \right| / \left( -ik\frac{L}{2}\cos\theta \right) \right| = L \left| e^{ik\frac{L}{2}\cos\theta} \right| \times \left| \sin\left(\frac{L}{2}k\cos\theta\right) / \left(\frac{L}{2}k\cos\theta\right) \right| = L \left| \sin\left(\frac{L}{2}k\cos\theta\right) / \left(\frac{L}{2}k\cos\theta\right) \right|,$$
 (2)

где  $k = 2\pi/\lambda$  – волновое число,  $\lambda$  – длина волны.

Примечание — Вынесение фазового множителя  $e^{ik\frac{L}{2}\cos\theta}$  в преобразовании Фурье эквивалентно смещению точки O в центр антенны, при этом «собирается» ДН. Расстояние  $r_0$  до точки наблюдения P в дальней зоне (рисунок 1) в анализе не участвует, так как множитель с  $r_0$  = const выносится за знак интеграла (1) [3].

Функция  $|f_{\rm c}(\theta)|$  является периодической с периодом, равным  $\pi$ . Графики нормированных функций  $|F_{\rm c}(\theta)| = |f_{\rm c}(\theta)|/L$  для  $L = 3\lambda$  и  $L = 3,5\lambda$  в системе координат функции  $|F_{\rm c}(\theta,\phi)|$  изображены на рисунке 2.

 $\Pi$ римечание — Нормирование эквивалентно изменению уровня амплитудного распределения A(z) = 1/L .



Рисунок 2. — Нормированные амплитудные диаграммы направленности для  $L=3\lambda$  и  $L=3,5\lambda$ 

Введение в (2) новой переменной  $\omega_z=k\cos\theta$ , рад/м , называемой пространственной частотой [6], приводит к угловому спектру поля антенны (3), аналогичному спектральной плотности видеоимпульса единичной амплитуды U(t)=1, длительностью  $\tau_u$ , эквивалентной длине антенны L, где координата z элемента антенны dz соответствует времени t [7]:

$$|f_{c}(\omega_{z})| = L \left| \sin\left(\frac{L}{2}\omega_{z}\right) \middle/ \left(\frac{L}{2}\omega_{z}\right) \right|.$$
 (3)

Слова «угловой спектр» подчеркивают, что осуществляется разложение волнового поля в спектр плоских волн различных направлений распространения [8]. Направления распространения плоских волн, на которые разлагается волновое поле, определяются волновым вектором  $\vec{k}$ , модуль и направляющие косинусы которого равны:  $k=2\pi/\lambda$ ,  $\cos\theta$  и  $\cos\left(\pi/2-\theta\right)=\sin\theta$ .

### Построение зон Френеля для линейной антенны

В отличие от дифракции Фраунгофера, дифракция Френеля наблюдается в «сходящихся лучах».

На рисунке 3 изображена линейная антенна длиной L. На оси y, проходящей через середину антенны — точку O, на расстоянии r находится точка наблюдения P, которая видна из точек A, B под углами  $\pi - \theta$  и  $\theta$ . Разобьем антенну из точки P на зоны Френеля. В соответствии с методом Френеля фазовый набег волны в пределах каждой зоны в точке P изменяется на  $\pi$ . Следовательно, набег фаз от внешних границ зон до точки P будет  $n\pi$ , а разность хода волн —  $n\lambda/2$ , где n=1,2,3,... — порядковый номер зоны Френеля. Представляя каждую зону вектором, величина которого пропорциональна размерам зоны, а фаза меняется от зоны к зоне на  $\pi$ , амплитуду результирующего колебания в точке P можно представить суммой амплитуд колебаний отдельных зон, заменив таким образом векторную сумму скалярной:  $A_{\Sigma} = A_1 - A_2 + A_3 - A_4 + ...$   $A_n$ .



Рисунок 3. – Построение зон Френеля

В соответствии с определением зон Френеля из прямоугольного треугольника OAP запишем уравнение дифракции:

$$l_n^2 + r^2 = \left(n\lambda/2 + r\right)^2,$$

где  $l_n$  — расстояние вдоль антенны от точки O до внешней границы n-й зоны.

Сокращая подобные, получим уравнение параболы, вершина которой смещена на  $n\lambda/4$  в область отрицательных значений r:

$$z^{2} = n\lambda y + (n\lambda/2)^{2} = n\lambda(y + n\lambda/4), \text{ где } z = l_{n}, y = r.$$
(4)

График функции  $z=\pm\sqrt{n\lambda\left(y+n\lambda/4\right)}$  для n=5, безразмерной  $\lambda=4$  и антенна длиной  $L=5\lambda$  изображены на рисунке 4, a. Следует заметить, что ось z направлена в сторону, противоположную той, которая указана на рисунке 3. Часть параболы, для которой y=r<0, находится в мнимой области, т. е. дифракция здесь отсутствует. При r=0 точки P и O совпадают, парабола пересекает ось z в точках  $\pm 5\lambda/2$ , количество зон Френеля равно:  $n=L/\left(\lambda/2\right)=2L/\lambda=10$ . Для  $L=n\,\lambda/2$  имеем  $l_n=L/2=(n\lambda/2)/2=n\lambda/4=10$ .

Коэффициенты при z и y в уравнении (4) образуют определитель уравнения кривой второго порядка, который является инвариантом относительно поворота и переноса осей координат [9]. Каноническое уравнение параболы в системе координат ZOY, смещенной по оси y на  $n\lambda/4$ , будет  $Z^2 = n\lambda Y$ , где  $Y = y + n\lambda/4$ . В поперечной плоскости xOy, где размер антенны  $d << \lambda/4$ , смещения параболы на  $n\lambda/4$  не будет и дифракционное уравнение запишется  $x^2 = n\lambda y$ . Подстановка  $x^2 = n\lambda y$  в (4) приводит к уравнению  $z^2 - x^2 = (n\lambda/2)^2$ , которое для действительной области  $y \ge 0$  является уравнением равносторонней гиперболы.

Для мнимой области y < 0 уравнение трансформируется в уравнение окружности  $z^2 + x^2 = (n\lambda/2)^2$ . Графики гиперболы и окружности для n = 5 и  $\lambda = 4$  в плоскости zOx изображены на рисунке 4,  $\delta$ .

*Примечание* — Уравнение  $z^2 - x^2 = 0$  определяет пару пересекающихся прямых z = x, z = -x, проходящих через точку O.



Рисунок 4. – Графики функций

Ввиду симметрии антенны относительно оси z, гипербола является образующей двуполостного гиперболоида вращения, а окружность — сферы. Асимптотический конус, к которому стремится гиперболоид при увеличении z, образуется прямыми, пересекающими ось z в т. O под углом  $45^\circ$ .

Решая (4) относительно n для  $r \ge l_n$ , получим:

$$n = \left(\sqrt{l_n^2 + r^2} - r\right) / (\lambda/2) = \left(r\sqrt{1 + \left(l_n/r\right)^2} - r\right) / (\lambda/2) \cong l_n^2 / \lambda r = (L/2)^2 / \lambda r,$$
 (5)

т. е. с увеличением r количество зон на антенне уменьшается. Расстояние, при котором на антенне будет укладываться n зон, найдем из (4):  $r = \left(l_n^2/n\lambda\right) - \left(n\lambda/4\right)$ . Подстановка n=1 и  $l_n = L/2 = n\lambda/4$  даст дальнюю границу зоны дифракции Френеля, или расстояние, при котором антенну «накрывает» только одна первая зона:  $r_{\rm max} = \left(L/2\right)^2/\lambda - \lambda/4 = \left(n^2 - 4\right)\lambda/16$ . Для  $r \ge l_n$ , как следует из (5),  $r_{\rm max} \cong \left(L/2\right)^2/\lambda = n^2\lambda/16$ .

При увеличении r дифракция Френеля переходит в дифракцию Фраунгофера. Для определения расстояния до ближней границы дальней зоны (области Фраунгофера) обычно задаются максимальной фазовой ошибкой на краю антенны  $\Delta\Phi_{\rm max}=\pi/8$ , что соответствует разности расстояний до точки P от края и центра антенны  $\Delta r=\lambda/16$  (рисунок 3). Расстояние до ближней границы дальней зоны найдем из треугольника OAP:

$$r_{\min} = 2L^2/\lambda - \lambda/32 \cong 2L^2/\lambda = n^2\lambda/4$$
.

### ДН линейной синфазной равномерно возбужденной антенны в ближней зоне

Для существования преобразования Фурье от АФР, должна быть абсолютно интегрируема функция  $|{\rm A}(z)|$ , т. е. должен сходиться интеграл  $\int\limits_{-\infty}^{\infty} |{\rm A}(z)| dz < \infty$ , что при

 $A(z) = {\rm const} \ , \ z \in [-L/2; L/2] \ {\rm и} \ A(z) = 0 \ , \ z \in (-\infty; -L/2] \wedge [L/2; +\infty) \ {\rm выполняется}. \ {\rm Кроме \ toro},$  при абсолютной интегрируемости функции  $\left| A\left(z\right) \right|$  должна выполняться лемма  ${\rm Римана} - {\rm Лебега} \ \lim_{\omega_z \to \infty} f_{\rm c}\left(\omega_z\right) = \lim_{\omega_z \to \infty} \int\limits_{-L/2}^{L/2} A(z) e^{i\Phi(z)} {\rm e}^{i\omega_z z} dz \to 0 \ \ [10]. \ {\rm Справедливость} \ {\rm леммы}$ 

обусловлена тем, что при больших  $\omega_z$  за счет фазового множителя подынтегральная функция быстро осциллирует, это приводит к тому, что две соседние полуволны имеют примерно одинаковые по абсолютной величине, но противоположные по знаку площади. Сумма таких площадей при  $\omega_z \to \infty$  стремится к нулю. Однако в отличие от спектральной плотности видеоимпульса, ввиду того, что  $|\cos\theta| \le 1$ , область определения функции  $|f_{\rm c}\left(\omega_z\right)|$  ограничена пространственными частотами  $|\omega_z| \le 2\pi/\lambda$ . Для расширения области определения функции  $|f_{\rm c}\left(\omega_z\right)|$ , начиная с  $\theta=0,\pi$ , осуществим переход к мнимой переменной  $i\phi$ . При замене вещественной переменной на мнимую тригонометрические функции формально переходят в гиперболические. В результате пространственная частота и модуль множителя системы от мнимого угла  $i\phi$  запишутся:  $k\cos(i\phi) = k \cosh(\phi) = \omega_z$ ,

$$|f_{c}(\phi)| = L \left| \sin\left(\frac{L}{2}k \cosh\phi\right) \middle/ \left(\frac{L}{2}k \cosh\phi\right) \right| = L \left| \sin\left(\frac{L}{2}\omega_{z}\right) \middle/ \left(\frac{L}{2}\omega_{z}\right) \right|.$$
 (6)

Проанализируем выражения (2) и (6). Для функции  $|F_{\rm c}(\theta)|$  внутреннюю функцию  $z(\theta) = (L/2)\cos\theta$  от угла «обхода»  $\theta$  можно интерпретировать как проекцию точки P, лежащей на окружности радиусом L/2, на ось z (рисунок 5).



Рисунок 5. – Траектория перемещения точки наблюдения P

Умножение координаты  $z\left(\theta\right)$  на волновое число  $k=2\pi/\lambda$  дает электрическую длину координаты  $z\left(\theta\right)$  точки P, или так называемую приведенную угловую координату  $\psi=\pi\frac{L}{\lambda}\cos\theta$  [3]. При изменении угла «обхода»  $\theta$  в видимой области в пределах  $0\leq\theta\leq\pi$  точка P перемещается по окружности радиуса L/2. Когда точка P будет находиться на оси z, в точке  $A\left(B\right)$  произойдет замена траектории движения на псевдоокружность (равностороннюю

гиперболу), а нормированная функция  $|F_{\rm c}\left(\theta\right)|$  трансформируется в нормированную функцию  $|F_{\rm c}\left(\phi\right)|$ .

### Примечания:

- 1. При изменении  $\theta$  изменяются «видимые» из дальней зоны поперечные размеры антенны, а значит и расстояние  $r_0$  до точки P в дальней зоне.
- 2. Каноническое уравнение окружности при замене действительного аргумента  $\theta$  на мнимый  $i\phi$  переходит в каноническое уравнение равносторонней гиперболы, если  $\theta$  и  $\phi$  интерпретировать как площади [9, 11]:

$$z^2 + y^2 = (L/2)^2 (\cos^2 \theta + \sin^2 \theta) = (L/2)^2 (\cosh^2 \phi - \sinh^2 \phi) = z^2 - y^2 = (L/2)^2$$
.

- 3. Гиперболический угол  $\phi$  (на рисунке 5 не показан) радиуса-вектора ON равен удвоенному значению площади, отсекаемой осью z, радиусом-вектором ON и единичной гиперболой  $z^2 y^2 = 1$ , аналогично тому, как тригонометрический угол  $\theta$  точки на единичной окружности может быть выражен через площадь кругового сектора  $\theta = 2S_{\text{сект}}$  [9, 11].
- 4. Положительное направление изменения тригонометрических углов против часовой стрелки, ось Z направлена влево, начало отсчета углов точка B.
- 5. Ввиду осевой симметрии антенны относительно оси z, траектория движения точки P(N) представляет собой сферу, переходящую в двуполостный гиперболоид вращения. На рисунке 5 гипербола изображена в той же плоскости, что и окружность.

Текущая координата точки N гиперболы по оси z будет  $z(\phi)=(L/2)$  сh $\phi$  . Асимптотами, к которым ветви равносторонней гиперболы приближаются при  $\phi \to \pm \infty$ , являются прямые y=z и y=-z, проходящие через точку O под углом  $\pi/4$ . Как видим, интегрирование в преобразовании Фурье по оси z может производиться от  $-\infty$  до  $+\infty$  аналогично преобразованию Фурье по времени t. Таким образом, переход в мнимую область и введение функции  $\left|f_{c}\left(\theta,\phi\right)\right|$  обеспечивает существование пространственного спектра  $\left|f_{c}\left(\omega_{z}\right)\right|$  на всей оси пространственных частот  $\omega_{z}\in\left[-2\pi/\lambda;\ 2\pi/\lambda\right]$  соответствует область изменения  $\theta\in\left[0;\pi\right]$  (рисунок 2), которая называется действительной или видимой областью, области пространственных частот  $2\pi/\lambda<\omega_{z}<-2\pi/\lambda$  соответствует мнимая или невидимая область [3]. На рисунке 6 изображен график нормированного углового спектра поля антенны  $\left|F_{c}\left(\omega_{z}\right)\right|=\left|f_{c}\left(\omega_{z}\right)\right|/L$  для A(z)=1,  $\Phi(z)=0$  и  $L=3\lambda$ , где пунктирными л $\left|$ иниями нанесены границы действительной и мнимой областей  $\left|\omega_{z}\right|=2\pi/\lambda=2\pi/(L/3)=6\pi/L$ .



Рисунок 6. – Нормированный угловой спектр поля антенны

Угловой спектр является суммой спектров действительной и мнимой областей. Соответствующая ему функция в силу линейности преобразования Фурье также является суммой двух функций:  $f_{\rm c}\left(\theta,\phi\right)=f_{\rm c}\left(\theta\right)+f_{\rm c}\left(\phi\right)$ . В точке перехода  $\theta=0\left(\pi\right)$  от  $f_{\rm c}\left(\theta\right)$  к  $f_{\rm c}\left(\phi\right)$  функция  $f_{\rm c}\left(\theta,\phi\right)$  является непрерывной  $\lim_{\theta\to 0}f_{\rm c}\left(\theta\right)=\lim_{\phi\to 0}f_{\rm c}\left(\phi\right)$ . Угловой спектр поля антенны, а значит и функции  $f_{\rm c}\left(\theta\right)$  и  $f_{\rm c}\left(\phi\right)$ , аналогично спектральной плотности видеоимпульса существуют одновременно на всех пространственных частотах.

Графики нормированной функции  $F_{\rm c}\left(\phi\right)=f_{\rm c}\left(\phi\right)/L$  для  $L=3\lambda$  и  $L=3,5\lambda$  показаны на рисунке 7. Как видно из графиков, при  $\phi\to 0$ ,  $L=3\lambda$  и  $L=3,5\lambda$   $F_{\rm c}\left(\phi\right)$  имеет соответственно ноль и максимум. Покажем, что  $F_{\rm c}\left(\phi\right)$  описывает дифракцию Френеля.

Значения  $\phi$  , при которых  $F_{\rm c}\left(\phi\right)=0$  , можно найти из уравнения

$$(L/2)k$$
 ch  $\phi = \pm p\pi$ ,

где 
$$k = 2\pi/\lambda$$
,  $p = 1, 2, 3...$  – номер нуля:  $(L/\lambda)$  ch  $\phi = \pm p$ . (7)

Умножим обе части (7) на 2 и после преобразования запишем:

$$\phi = \pm \operatorname{Arch}\left(2p/n\right),\,$$

где  $n = L/(\lambda/2)$  – количество зон Френеля, укладывающихся на антенне при  $\phi \to 0$ .

Нули функции  $F_{\rm c}\left(\theta\right)$  рассчитываются по аналогичной формуле [3], поэтому можно записать:

$$\begin{cases} \theta = \arccos\left(\pm 2p/n\right) \text{ для } 2p \le n \\ \phi = \pm \operatorname{Arch}\left(2p/n\right) \text{ для } 2p > n \end{cases} \qquad p = 1, 2, 3..., n = L/(\lambda/2).$$
 (8)

Если для угла  $\phi$  в (8) условие 2p > n не выполняется, то угол  $\phi$  становится мнимым, функция ch  $\phi$  переходит в функцию  $\cos \theta$ , а функция  $F_{\rm c}\left(\phi\right)$  – в функцию  $F_{\rm c}\left(\theta\right)$ .



Рисунок 7. – Графики нормированных функций  $F_{\rm c}(\phi)$  для  $L=3\lambda$  и  $L=3,5\lambda$ 

Положения максимумов  $F_{\rm c}\left(\phi\right)$  находятся между направлениями нулевого излучения и приближенно соответствуют точкам, в которых числитель выражения (6) принимает

значения, равные  $\pm 1$ . Соответствующие значения  $\phi$  можно найти из уравнения  $\frac{L}{2}k$  ch  $\phi=\pm\left(\frac{2\,p+1}{2}\right)\pi$ ,  $k=2\pi/\lambda$ , p=1,2,3... номер максимума:

$$(L/\lambda) \operatorname{ch} \ \phi = \pm (p+1/2). \tag{9}$$

Умножим обе части (9) на 2 и после преобразования запишем:

$$\phi = \pm \operatorname{Arch}\left(\frac{2p+1}{n}\right),\,$$

где  $n=L/\left(\lambda/2\right)$  – количество зон Френеля, укладывающихся на антенне при  $\phi \to 0$  .

Максимумы функции  $F_{\rm c}\left(\theta\right)$  рассчитываются по аналогичной формуле [3]:

$$\begin{cases} \theta = \arccos\left(\pm \frac{2p+1}{n}\right) \text{ для } 2p+1 \le n, \\ \phi = \pm \operatorname{Arch}\left(\frac{2p+1}{n}\right) \text{ для } 2p+1 > n, \end{cases} p = 0, 1, 2, 3..., n = L/(\lambda/2). \quad (10)$$

Из выражений (7), (9) следует, что при  $\phi \to 0$  и четном количестве зон Френеля, укладывающихся на антенне  $2p = L/(\lambda/2)$ , напряженность поля **в точке** P будет равна нулю, при нечетном количестве  $2p + 1 = L/(\lambda/2)$  — максимуму. Аналогичная картина дифракции Френеля наблюдается **на отверстии в экране**, когда точечный источник света удален в бесконечность и волна на отверстии является плоской. Также чередуются нули и максимумы поля в точке наблюдения при четном и нечетном количестве открытых зон Френеля.

Гиперболический угол  $\phi$  (на рисунке 5 не показан) радиуса-вектора ON связан с угловой координатой  $\theta$  точки P', которая является проекцией точки N на перпендикуляр к антенне в точке A(B), выражением [11], которое можно дополнительно преобразовать:

$$\phi = \ln \left[ \operatorname{tg} \left( \frac{\pi}{4} + \frac{\theta}{2} \right) \right] = \operatorname{Arch} \left[ \frac{1}{\cos \theta} \right].$$

Подставляя  $\phi$  в (6) и учитывая  $L = n\lambda/2$ , получим:

$$\left| F_{c, \Phi^2}(\theta) \right| = \left| \sin \left( \frac{L}{2} \frac{k}{\cos \theta} \right) \middle/ \left( \frac{L}{2} \frac{k}{\cos \theta} \right) \right| = \left| \sin \left( \frac{n\lambda}{4} \frac{k}{\cos \theta} \right) \middle/ \left( \frac{n\lambda}{4} \frac{k}{\cos \theta} \right) \right|. \tag{11}$$

Замена гиперболического угла  $\phi$  на тригонометрический  $\theta$  позволяет перейти из мнимой области в действительную, где каждой точке гиперболы N соответствует определенная точка P', амплитуда поля в которой равна  $\left|F_{\text{c}, \varphi 2}\left(\theta\right)\right|$ . Для дифракции Френеля угол  $\theta$  есть не что иное, как угол дифракции, максимальное значение которого не может превышать  $\pi/2$  [5].

В результате условия (8), (10) для нулей и максимумов  $F_{\rm c}\left(\theta\right)$  можно соответственно переписать:

$$\begin{cases} \theta = \arccos\left(\frac{\pm 2p}{n}\right) \text{ для } 2p \le n, \\ \theta = \arccos\left(\frac{\pm n}{2p}\right) \text{ для } 2p > n, \end{cases} \qquad p = 1, 2, 3 \dots, n = L/(\lambda/2), \tag{12}$$

$$\begin{cases} \theta = \arccos\left(\pm \frac{2p+1}{n}\right) \text{ для } 2p+1 \le n, \\ \theta = \arccos\left(\frac{\pm n}{2p+1}\right) \text{ для } 2p+1 > n, \end{cases} p = 0, 1, 2, 3..., n = L/(\lambda/2), \tag{13}$$

где первые два выражения соответствуют дифракции Фраунгофера, вторые два – дифракции Френеля.

На рисунке 8 построены графики  $F_{\text{c}, \phi 1}(\theta)$  — дифракции Фраунгофера и  $F_{\text{c}, \phi 2}(\theta)$  — дифракции Френеля от угла  $\theta$  для  $L = \lambda$ . Результирующая функция  $F_{\text{c}}(\theta)$  является суммой  $F_{\text{c}}(\theta) = F_{\text{c}, \phi 1}(\theta) + F_{\text{c}, \phi 2}(\theta)$ .



Рисунок 8. – Изменение амплитуды напряженности поля в зонах Фраунгофера и Френеля от угла  $\theta$  для линейной антенны при  $L=\lambda$ 

Из (2) амплитуда поля на краю антенны в точке A(B) в зависимости от L будет:

$$|F_{c, \oplus 2}(0)| = |\sin(kL/2)/(kL/2)| = |\sin(n\pi/2)/(n\pi/2)|.$$
 (14)

Для  $L=\lambda$  ,  $n=L/\left(\lambda/2\right)=2$  , имеем  $\left|F_{\mathrm{c},\varphi_2}\left(0\right)\right|=0$  . Для  $L=3,5\lambda$  , нечетного n=7 амплитуда поля в точке A(B) имеет максимум  $\left|F_{\mathrm{c},\varphi_2}\left(0\right)\right|=0,091$  . При  $\theta\to\pi/2$   $F_{\mathrm{c},\varphi_1}\left(\theta\right)\to1$  ,  $F_{\mathrm{c},\varphi_2}\left(\theta\right)\to0$  максимум  $F_{\mathrm{c},\varphi_1}\left(\theta\right)$  располагается на оси y, ноль/максимум  $F_{\mathrm{c},\varphi_2}\left(\theta\right)$  — на оси z, т. е. сдвинуты в пространстве на  $\pi/2$  , и в этом состоит отличие от оптики, где они находятся на одной оси [5].

Если смотреть на антенну из дальней зоны, из точки P, то при изменении  $\theta$  от  $\pm \pi/2$  до  $O(\pi)$  на антенне появляются противофазные зоны, которые приводят к «гашению» поля в текущем направлении в дальней зоне и росту (см. ниже) амплитуды реактивного поля в ближней зоне. При  $\theta = O(\pi)$  количество синфазно-противофазных участков на антенне максимальное и совпадает с количеством зон Френеля  $n = L/(\lambda/2)$ .

Рассмотрим механизм образования стоячей волны вдоль антенны при  $\theta = \pi(0)$ . Для синфазной линейной антенны с равномерным амплитудным распределением все элементы

антенны излучают парциальные поля  $\vec{E}_1, \vec{E}_2...\vec{E}_n$  одинаковой амплитуды и фазы. За счет разности хода электромагнитные волны от этих элементов приходят в точку A(B) (см. рисунок 5) со своими фазами  $\phi_n = kz_n$ . На рисунке 9 изображены мгновенные значения векторов парциальных полей в точке A(B) в некоторый момент времени t для антенны длиной  $\lambda/2$ . Несложно заметить, что проекции векторов в направлении оси y описываются функцией  $\sin\left(\phi_n\right)$ . Вектор  $\vec{E}_1$  соответствует точке A, вектор  $\vec{E}_n$  — точке B. Результирующий вектор  $\vec{E}_\Sigma$  будет совпадать с вектором  $\vec{E}_m$ , соответствующим точке O. В результате в точке A(B) будет наблюдаться пучность напряженности поля, равная удвоенной амплитуде возбуждения, деленной на электрическую длину одной зоны  $\left|F_{c,\varphi 2}\left(0\right)\right|_{L=\lambda/2}=2/\pi=0,637$ , что во временной области равно среднему значению амплитуды синусоидального тока за половину периода. Необходимо заметить (см. (14)), что ввиду нечетности функция  $F_{c,\varphi 2}\left(0\right)$  в точках A и B имеет противоположные знаки. С течением времени векторы на рисунке 9 будут вращаться вокругоси z с периодом, равным периоду возбуждения.



Рисунок 9. – Векторное суммирование полей в точке А

Для антенны длиной  $L=\lambda$  при  $\theta=\pi\left(0\right)$  из-за разности хода между половинами антенны до точки A(B), равной  $\lambda/2$ , парциальные поля элементарных излучателей одной половины вычтутся из парциальных полей другой половины и результирующее поле в точке A(B) станет равным нулю, т. е. будет наблюдаться узел напряженности поля (см. рисунок 8). В чем также можно убедиться, мысленно достроив векторы в нижней части окружности (см. рисунок 9). Сказанное справедливо для антенны любой длины при четном количестве зон Френеля, укладывающихся на антенне  $2p=L/\left(\lambda/2\right),\ p=1,2,3...$ . Для антенны, когда количество зон Френеля нечетно  $2p+1=L/\left(\lambda/2\right),\ p=0,1,2,3...$ , поля четных зон вычтутся, а результирующее поле в точке A(B) создаст оставшаяся зона, аналогично антенне длиной  $\lambda/2$ , с той лишь разницей, что увеличение длины антенны приводит к пропорциональному уменьшению амплитуды поля в пучности стоячей волны. Общее выражение из (14) запишется:  $|F_c(0)|_{L=n\lambda/2}=2/n\pi=0,637/n$ ,  $n=L/\left(\lambda/2\right)$ . Изменение длины антенны L от  $\lambda/2$  до  $n\lambda/2$  приводит к чередованию в точке наблюдения A(B) нулей и максимумов напряженности поля, следующих вдоль антенны с периодом  $\lambda/2$ , т. е. наблюдается режим стоячих волн. Это так называемые резонансные сечения, в которых разность фаз между током и напряжением, как

известно из теории длинных линий, равна нулю. Между этими точками поле носит реактивный характер — сдвиг фаз составляет  $90^{\circ}$ .

Проанализируем, как изменяется напряженность поля  $F_{\text{с.} + 2}(\theta)$  от угла дифракции  $\theta$  при увеличении  $L = n\lambda/2$ , когда точка P находится на расстоянии  $r_{\text{max}}$  (рисунок 3). Выражение для расчета  $\theta$  несложно получить из  $r_{\text{max}} = (L/2)^2/\lambda - \lambda/4$ ,  $l_n = L/2 = n\lambda/4$ . Откуда  $\theta = \arctan(r_{\text{max}}/l_n) = \arctan(\left(n^2 - 4\right)/4n\right]$ . Ниже приведены значения  $F_{\text{с.} + 2}(\theta)$ , рассчитанного с помощью полученной формулы, а также номер нуля либо максимума p. Выбор p производился по формулам (12), (13) путем перебора до получения рассчитанного  $\theta$ :

$$\begin{split} L &= \lambda \;, \quad n = 2 \;, \quad r_{\text{max0}} = 0 \;, \qquad \theta = 0^{\circ} \;, \qquad F_{\text{c.} \Phi 2} \left( 0^{\circ} \right) = 0 \;, \qquad p = 1 \;; \\ L &= 2\lambda \;, \quad n = 4 \;, \quad r_{\text{max1}} = 3\lambda/4 \;, \quad \theta = 36, 9^{\circ} \;, \quad F_{\text{c.} \Phi 2} \left( 36, 9^{\circ} \right) = 0, 127 \;, \quad p = 2 \;; \\ L &= 3\lambda \;, \quad n = 6 \;, \quad r_{\text{max2}} = 2\lambda \;, \quad \theta = 53, 13^{\circ} \;, \quad F_{\text{c.} \Phi 2} \left( 53, 13^{\circ} \right) = 0 \;, \qquad p = 5 \;; \\ L &= 4\lambda \;, \quad n = 8 \;, \quad r_{\text{max3}} = 15\lambda/4 \;, \quad \theta = 61, 92^{\circ} \;, \quad F_{\text{c.} \Phi 2} \left( 61, 92^{\circ} \right) = 0, 037 \;, \quad p = 8 \;; \\ L &= 5\lambda \;, \quad n = 10 \;, \quad r_{\text{max4}} = 6\lambda \;, \qquad \theta = 67, 38^{\circ} \;, \quad F_{\text{c.} \Phi 2} \left( 67, 38^{\circ} \right) = 0 \;, \qquad p = 13 \;; \\ L &= 6\lambda \;, \quad n = 12 \;, \quad r_{\text{max4}} = 35\lambda/4 \;, \quad \theta = 71^{\circ} \;, \qquad F_{\text{c.} \Phi 2} \left( 71^{\circ} \right) = 0, 017 \;, \qquad p = 18 \;. \end{split}$$

Как видно, при изменении  $r_{\max}$  кратно  $\lambda/4$ , что соответствует изменению фазы волны в точке P на  $\pi/2$ , происходит поочередное изменение амплитуды поля от нуля до максимума. Увеличение при фиксированной L  $r > r_{\max}$  приводит к увеличению угла  $\theta$ , а это, в свою очередь, к уменьшению углового размера зоны и, следовательно, амплитуды пространственной волны (рисунок  $\theta$ ). Изменяющийся одновременно с этим фазовый набег  $\Phi = kr$  приводит  $F_{\text{c.} \Phi 2}(r,t) = F_m \cos (\omega t - kr)$  к колебаниям амплитуды напряженности пространственной волны относительно нуля. Частота колебаний  $F_{\text{c.} \Phi 2}(\theta)$ , учитывая зависимость  $\Phi = kr = k\left(L/2\right) \operatorname{tg}\theta$ , с увеличением  $\theta$  растет нелинейно. При  $\theta \to \pi/2$ ,  $r \to \infty$  антенна стягивается в точку, а амплитуда колебаний  $A_n \to 0$ .

Антенна с  $L=2\lambda$  на расстоянии  $r_{\rm max}=0,75\lambda$  создает амплитуду реактивного поля  $\left|F_{\rm c.\varphi2}\left(36,9^{\rm o}\right)\right|=0,127$ , величиной которого по отношению к амплитуде активного поля дальней зоны  $\left|F_{\rm c.\varphi1}\left(90^{\rm o}\right)\right|=1$  можно пренебречь. Учитывая, что с увеличением L это отношение будет уменьшаться, естественно принять за дальнюю границу ближней зоны антенн с  $L\geq 2\lambda$  расстояние  $r_{\rm max}=0,75\lambda$ .

### Заключение

Анализ ДН линейной антенны в мнимой области и использование метода зон Френеля позволили установить, что:

- 1. ДН линейной равномерно возбужденной синфазной антенны в ближней зоне описывает дифракцию Френеля.
- 2. Вдоль антенны наблюдается распределение амплитуды напряженности электромагнитного поля, аналогичное стоячим волнам в длинной линии, в которых, как известно, сосредоточено реактивное поле. Разница состоит в механизме формирования стоячей волны. Если в длинной линии стоячая волна возникает в результате интерференции падающей и отраженной волн, то в антенне это результат дифракции парциальных волн. Активное поле дальней зоны и реактивное поле вблизи антенны находятся в квадратуре,

- т. е. волновые процессы сдвинуты в пространстве друг относительно друга на  $\pi/2$ , аналогично тому, как активная и реактивная мощность сдвинуты на  $\pi/2$  во временной области.
- 3. В преобразовании Фурье от АФР бесконечные пределы интегрирования обеспечиваются за счет мнимой области, которой соответствует ближняя зона антенны.
  - 4. Было получено выражение для расчета дальней границы ближней зоны антенны.
- 5. Дополнено выражение для расчета нулей и максимумов ДН линейной антенны в области Фраунгофера аналогичным для области Френеля.
- 6. Показано, что с увеличением длины антенны относительная амплитуда реактивного поля уменьшается и при  $L \ge 2\lambda$  на расстоянии  $r_{\rm max} = 0,75\lambda$  им можно пренебречь.
- 7. При синтезе ДН эквивалентных линейных антенн методом интеграла Фурье [6], учитывая малую амплитуду реактивного поля по сравнению с активным при  $L >> \lambda$ , ошибкой их воспроизведения из-за отбрасывания мнимой части углового спектра можно пренебречь, аналогично тому, как при синтезе радиочастотных фильтров пренебрегают частью спектра сигнала, которая приходится на его дальние участки.

### Список использованных источников

- 1. Буйвалов, И. Е. О дифракции Френеля, ближней зоне и мнимой области / И. Е. Буйвалов // Веснік сувязі. № 1. 2022. С. 44—46; № 2. 2022. С. 60—64.
- 2. Максвелл, Дж. Избранные сочинения по теории электромагнитного поля / Дж. Максвелл. М.: Гостехтеоретиздат, 1952. 688 с.
- 3. Антенные системы радиоэлектронных средств : учеб. /  $\Gamma$ . В. Хохлов [и др.]; под общ. ред.  $\Gamma$ . В. Хохлова. М. : Воениздат, 1978. 368 с.
- 4. Никольский, В. В. Электродинамика и распространение радиоволн : учеб. пособие для вузов / В. В. Никольский, Т. И. Никольская. М. : Наука, гл. ред. физ.-мат. лит., 1989. 544 с.
- 5. Савельев, И. В. Курс общей физики : учеб. пособие : в 3 т. / И. В. Савельев. М. : Наука, 1982. Т. 2. 496 с.
- 6. Сазонов, Д. М. Антенны и устройства СВЧ : учеб. / Д. М. Сазонов. М. : Высш. шк.,  $1988.-432~\mathrm{c}.$
- 7. Теория электрических цепей: учеб. для вузов / М. П. Батура, А. П. Кузнецов, А. П. Курулев; под общ. ред. А. П. Курулева. Минск: Вышэйш. шк., 2015. 608 с.
  - 8. Зверев, В. А. Радиооптика / В. А. Зверев. М.: Сов. радио, 1975. 304 с.
- 9. Корн,  $\Gamma$ . Справочник по математике для научных работников и инженеров /  $\Gamma$ . Корн,  $\Gamma$ . Корн. M. : Наука, 1974. 832 с.
- 10. Сидоров, Ю. В. Лекции по теории функции комплексного переменного : учеб. / Ю. В. Сидоров, М. В. Федорюк, М. И. Шабунин. М. : Наука, 1982. 488 с.
- 11. Янпольский, А. Р. Гиперболические функции / А. Р. Янпольский. М. : Физматгиз, 1960.-196 с.

<sup>\*</sup> Сведения об авторе: Буйвалов Игорь Евгеньевич, ОАО «АЛЕВКУРП». Статья поступила в редакцию 13.03.2023 г.

# Требования к статьям, представляемым для опубликования в сборнике научных статей Военной академии Республики Беларусь

Представляемые в редакцию статьи должны быть актуальными по содержанию, раскрывать проблемы военной теории и практики, предлагать пути их решения. Они должны содержать элементы новизны и анализа, иметь практическую направленность. Автор несет ответственность за точность цитируемого текста и ссылки на источник, а также за то, что в материалах нет данных, не подлежащих открытой публикации.

Рекомендуется в каждой из статей выделять:

введение с характеристикой состояния дел в соответствующей области исследования, обоснованием актуальности рассматриваемой задачи, а также изложением общего подхода к ее решению;

*основную часть*, отражающую используемый метод исследования и его результаты в сопоставлении с известными ранее;

*выводы*, характеризующие обобщения и умозаключения авторов, непосредственно вытекающие из представленного в основной части материала, а также возможные направления и перспективы использования полученных результатов.

К опубликованию не принимаются материалы, представляющие собой компиляцию известных результатов исследований других авторов, а также статьи публицистического характера, не связанные с решением конкретной научной задачи.

В конце статьи приводится список использованных источников, на которые даются ссылки при изложении основного текста. Автор несет ответственность за достоверность цитирования, а также отсутствие плагиата.

Требования к оформлению статей:

общий объем 5–8 страниц формата A4; в исключительных случаях общий объем может быть аргументированно увеличен до 10 страниц;

текстовый редактор Word for Windows версии 6.0 или выше;

редактор формул MathType версий 6.0-6.7;

поля 2 см (со всех сторон);

шрифт Times New Roman, 12 pt;

межстрочное расстояние 1 интервал.

Основной текст статьи должны предварять:

УДК (выравнивание по левой стороне);

название (шрифт полужирный, буквы прописные, выравнивание по центру);

инициалы, фамилия, ученая степень и ученое звание автора (-ов) (выравнивание по центру);

аннотация на русском и английском языках (курсив, отступ первой строки 1,25 см, выравнивание по ширине).

Форматирование основного текста: отступ первой строки 1,25 см; выравнивание по ширине. Форматирование подписей к рисункам: шрифт светлый, выравнивание по центру. Форматирование заголовков таблиц: шрифт светлый, выравнивание по левому краю таблицы 11 рt. Форматирование формул: выравнивание по центру, последовательная нумерация (по правому краю, в скобках).

Промежутки между структурными элементами статьи (УДК, название, авторы, аннотация, основной текст, список литературы) по вертикали – 6 pt.

В конце статьи необходимо указать фамилию, имя, отчество автора, подразделение, организацию, номер контактного телефона.

Текст статьи (в распечатанном и электронном вариантах) вместе с выпиской из протокола заседания кафедры (НИЛ), рекомендующей ее к опубликованию, направляется в редколлегию. Если авторы статьи являются сотрудниками внешней организации, дополнительно требуется представить экспертное заключение о возможности опубликования материалов в открытой печати.